Project 4: Finned Cooling Plate

Nicholas McLaughlin
MECH.5410 — Advanced Heat Transfer
Professor Juan Pablo Trelles
November 10", 2020

Table of Contents

VAITADIES USBU ...ttt ettt et e st e bt e st e ebe e be e st e eneesbeeneenreenreennens 3
1. MOdE] FOIMUIALION ...ttt ettt e neenreeeenne e 4
SCREMALIC DIAGIAM ...ttt bbbt et b bbb 4
EQUALTONS. ...ttt bbb e bt n s 4
RIGOIOUS SOIULION ...ttt 5
P Y (oo [=] IS0 [1 1 o] o TSRS 7
I Y (oo (=] Y= g o= £ [o S SRR 9
A, OPLIMAL DESIGN ...ttt b bt bbbt bt et et bbbt b b 11
OptiMIzation AlGOTTENMcuiiii e e 11
Fin Equation with Negligible Tip Heat Transfer ... 11
Generalized FiN EQUALTONocoiiiiiiiiieee et 12
L E 1= =] 0TSSR 14
N o]0 00)G OSSP 15
A.L: Finned Heat Transfer SCrPL.........ooieii et 15
A.2: Verification of Finned Heat Transfer SCript..........cccoviiiiiieie i 24
A.3: Optimization Of Ly @nd Li SCIIPLeiiiieieieesece e 33
A.4: Finned Heat Transfer FUNCLION ..o 38

Variables Used

Variable Description Value Unit
T =T(i,j) | Local temperature of the fluid N/A [°C]
T =T(1,j) | Fluid temperature directly above the plate N/A [°C]
L, Length of the plate [0.51.5] [m]
Ly Length of the fins [0.01 0.10] [m]
L, Length of domain along y 0.2 [m]
T, Inflow temperature of the top fluid 100 [°C]
Uy Inflow velocity 0.001 [m/s]
h Heat transfer coefficient of the top fluid N/A [W/m?/K]
k Thermal conductivity of the top fluid 0.5 [W/m/K]
p Density of the flowing fluid 800 [kg/m?]
Cp Flowing fluid heat capacity 2000 [J/kg/K]
U Viscosity of the flowing fluid 0.001 [Pa/s]
Qf Heat transfer from the fins N/A W]
Qp Heat transfer from the unfinned area below the plate | N/A W]
Q; Heat transfer from the flowing fluid above the plate | N/A [W]
T Ambient fluid temperature below the plate 10 [°C]
h. Convective heat transfer coefficient below the plate | 10 [W/m?/K]
6 Velocity boundary layer N/A [m]
Or Thermal boundary layer N/A [m]
T Ambient fluid temperature below the plate 10 [°C]
h. Convective heat transfer coefficient below the plate | 10 [W/m?/K]
ke Thermal conductivity of the fins 200 [Wim/K]
P/A Ratio of perimeter to cross-sectional area of the fins | 100 [m?]
Af Total cross-sectional area of the fins %A [m?]
A Total area of the plate N/A [m?]

1. Model Formulation
Schematic Diagram

A schematic of the model being considered is presented below in Figure 1.

“«H > 5>

Figure 1. Schematic of a Horizontal Finned-Flat Plate with Fluid Flowing Over

Equations
The total heat transfer through a fin with negligible heat loss at the tip is given by Equation 1.

P h,
Qr = Afkfmtanh(mLf)(T —Tw), where m = Zk_f 1)

This equation is useful for fins with sufficiently large aspect ratios (length/width) but is not
accurate for more stout fins. This is an important consideration to keep in mind.

The heat transfer for the area below the plate where there are no fins is assumed to be equivalent
to that of a flat plate with the heat transfer coefficient prescribed (Equation 2).

Qb = heAp(T — Tw))

It is also known that the fins take up precisely half the area of the plate, hence the area of the area
without fins is also equal to As.

The heat transfer from the topside fluid is equal to Equation 3. Note, in this equation A is equivalent
to 2A¢ with the previous logic.

Q: = hA(T, = T) (3.8)
Q: = ZhAf(le — Thottom) (3.b)

Equation 3.a is the heat transfer considering the initial fluid temperature —a more holistic approach,
whereas Equation 3.b describes the heat transfer within the context of the finite volume method
being used. Ty represents the temperature of the bottommost finite volumes.

Considering an energy balance, Equation 4 may be obtained. This simply equates the heat transfer
from the top surface to the bottom area and fins.

Q: =0 +0Qp (4)

Equations 1, 2, and 3.b are substituted in Equation 4 and As is divided out yielding Equation 5.
Note, since the area was removed, these expressions now constitute equating the heat fluxes (heat
transfer per unit area).

Zh(le - Tbottom) = Cl(T - Too) + hc(T - Too)

where C; = kfmtanh(mLf) ©)
Solving this for h, Equation 6 is obtained.
h= (G, +h) e L) ©
2 (T1j — Tabottom)

The expression 2(C; + h,) is the average heat transfer coefficient along the bottom side of the
plate. This is emergent from the algebra but coincides nicely with what is to be expected.

With a more rigorous consideration of the finite volume method, h can be represented by Equation
7.

Tyi — Ty k
h= < SEE)— 7)
le - Tabottom dy
This equation effectively equates the heat transfer coefficient to k(dT/dy)/AT. This is, in fact, the
exact definition of h.

Now, equating Equations 6 and 7 and solving for Ty, Equation 8 is obtained. Here, Ty; is the
temperature of the finite volumes along the bottom boundary

1 k
2t h) + T,

le - k (8)
dy
Note, this equation does not depend on the heat transfer coefficient at the top (h) or a prescribed

temperature at the bottom (Tanottom). This is ideal since both values are unknown. At this point,
Equation 8 is precisely the boundary condition needed to use the finite difference method.

Rigorous Solution

1
E(Cl + hc) +

As previously mentioned, Equation 1 works well for fins of sufficiently large aspect ratios. This
means the numerical model will not be applicable for small fin lengths. For a more generalized
equation, Equation 1 will need to be replaced with an expression for Qs that provides reasonable
results as Lt approaches 0 m. From Ozisik, this general fin equation is defined as [1]:

sinh(mLf) + (mh_lecf) cosh(mLf)

Qr = Agkym , (T — To),
cosh(mL;) + (kf) sinh(mLy) ©)
Ph,
where m = Zk_f

When Lt = 0, Qr reduces to hAs(T — T), precisely the expression for heat transfer along a flat
plate.

To implement this equation into the previous expressions, Ci can be specified to be
smh(mLf) + (he f) cosh(mLf)

cosh(mL;) + (e f) sinh(mLy)

in Equation 8. This is the only adjustment needed to implement this new fin equation.

2. Model Solution

Through the modification of Professor Juan Pablo Trelles’ code “heatconvection2d fvm gs.m”, a
numerical solution using the finite volume method can be obtained for this analysis. Implementing
Equation 8 in MATLAB, the bottom boundary temperature was defined to be:

T(i, 3) = (T(i+l, j)*(k/dy) + Tinf*0.5* (kmt + hc)) /
(0.5*%(kmt + hc)+ k/dy);

This is specified within the boundary nodes section of the code, within the iterative solver. Of note,
this does not depend on the successive temperature iterations — it provides the same boundary
temperature at each step.

Because this line does not make use of a specified bottom temperature or heat transfer coefficient,
they do not need to be included as boundary conditions. All requisite boundary conditions are as
follows:

Q

% Boundary conditions:

Taleft = TO; $ [C] ambient temperature - left
Taright = 0; $ [C] ambient temperature - right
Tatop = 0; $ [C] ambient temperature - top
hleft = 1e20; % [W/m"2/K] convective coefficient - left
hright = 0.0; % [W/m"2/K] convective coefficient - right
htop = 0.0; % [W/m"2/K] convective coefficient - top

The left convective heat transfer coefficient is defined as an absurdly large number since this
results in a fixed left boundary temperature.

The velocity distribution throughout the domain was defined is a nested function, shown below.

% Boundary layer function
function ux = UXFUNCTION (x,Y)
mu = 0.001;

rho = 800;

Uxmax = 0.001;

del = @(x) ((280/13)* (mu*x/ (rho*Uxmax)))".5;
if y >= del (x)
ux = Uxmax;
else
ux = Uxmax* ((y/del(x)) - 0.5*(y/del(x))"3);
end
end

This function takes the input positions x and y and considers them along the velocity boundary J(x)
(or del in this code). If the y position is greater than or equal to 6(x), then the velocity is set to be
the maximum. In this case, it is 0.001 m/s. If the y position is less than 6(x), the velocity is then set
to be equal to the following function.

e =03 (55) -3 (525))

1
where §(x) = (%%) 2

(11)

The rest of this code is provided in Appendix A.1.

3. Model Verification

The verification code is provided in Appendix A.2. This is effectively the same as the finned heat
transfer code in Appendix A.1 but substitutes the variable C; (or kmt in the code) for a very large
number. This effectively makes the fins perfect heat conductors with a negligible temperature
gradient resulting in the bottom temperature boundary being equal to 10 °C.

Considering the temperature distributions at x = L for nodes Nx = 100, 200, and 400 and Ny = 20,
40 and 80, the following plots in Figure 2 were obtained.

Comparison Between Temperature Profiles at x = L Comparison Between Temperature Profiles at x = L
(N_=100,N_=20) (N_=200,N_ =40)
x y x y
0.2 T T T T 0.2 T T T T
Analytical Solution Analytical Solution
0.18 Numerical Solution 0.18 Numerical Solution
0.16 0.16
0.14 0.14
0.12 [0.12 [
E o1} E o1t
> >
0.08 1 0.08
0.06 1 0.06
0.04 - 1 0.04 -
0.02 [A 0.02 |-
0 L 0 n
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
T[°C] T[°C]

Comparison Between Temperature Profiles at x =L
(N, =400, N_=280)
x y
0.2 T T T T

Analytical Solution

0.18 - Numerical Solution |]

0.16 -
0.14

012

E o1t
>
0.08 -
0.06 -
0.04

0.02 -

0

10 20 30 40 50 60 70 80 90 100
TI[°C]

Figure 2. Temperature Profiles at x = L for Various (Nx, Ny) Node Combinations
(Top Left: (100, 20), Top Right: (200, 40), Bottom: (400, 80))

From these plots, there appears to be close agreement between the analytical and numerical
solutions at x = L. This is especially so for lesser node counts. The primary difference between the
analytical and numerical solutions is the shape of the curve. The analytical solution has a much
more pronounced bend whereas the numerical solution presents a more gradual curve. This may
indicate that the numerical solution does not completely capture the heat transfer phenomena in its
entirety. This discrepancy appears to be amplified at higher node counts (the third plot in Figure
2).

The accuracy of the top two plots in Figure 2 indicates reasonable results may be obtained at
moderate node amounts. So, for Nx = 200 and Ny = 40, the following temperature distributions
across the 2D domain may be obtained for both the numerical and analytical solutions.

Temperature Distribution with Thermal Boundary Layer . Analytical Temperature Distribution with Thermal Boundary Layer .
0.2 1 0.2 1
Analytical Thermal Boundary Layer Analytical Thermal Boundary Layer
0.18 Numerical Thermal Boundary Layer (99%) a0 0.8 Numerical Thermal Boundary Layer (99%) a0
016 80 016 80
0.14 0.14

70 70
012 g2 012 £
= 60 2 — 60 @
3 3
£ o1 © E o1 E
> so & > so &
0.08 2 0.08 2

40 40

0.06 0.06

0.04 0 0.04 0

0.02 20 0.02 20

0 0 10

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x[m] x[m]

Figure 3. Temperature Distributions for Numerical and Analytical Methods at a Base Plate
Temperature of 10 °C

In Figure 3, the two plots are nearly identical. There is no discernable difference between the
gradients and the thermal boundary layers overlap similarly in both plots. The black line is the

. i T asax o
analytical thermal boundary layer given by §, = o) whereas the blue line is the boundary

from the numerical solution where the temperature is 99% of the maximum temperature for each
X position.

10

4. Optimal Design
Optimization Algorithm

The code used to determine the optimal design is provided in Appendix A.3.

Upon initial investigations into the behavior of the finned plate as a function of Lx and Ly, it became
evident that there was a variety of potential combinations that would result in a mean fluid
temperature decrease of 10 °C at x = L. This temperature decrease will be abbreviated as AT. This
is inherently problematic because most 2D optimization algorithms are meant to find a discrete
point in the domain — not a distribution of points.

To combat this, a novel 2D optimization method was devised. This algorithm creates a coarse node
array, of size Nt by Ny, consisting of Lt and Lx dimensions in which the AT value is calculated for
each node. The algorithm then interpolates along each Ls column to determine approximately
where AT = 10 °C. This position in the Lx dimension is rounded to the closest node (N¢), and two
more nodes are created above and below Nc¢. The node above N is %2 (Nc + Nc+1) whereas the node
below is ¥2 (N¢ + Nc.1). This algorithm is iterated, creating increasingly refined meshes. A power
function is then fit to this refined data and an expression relating Lt to Ly is obtained for resulting
AT =10 °C.

This algorithm is limited insofar as the number of nodes in the Lt dimension are fixed. However,
this was necessary for the interpolation method used.

Fin Equation with Negligible Tip Heat Transfer

The resulting plot and function for this using the equation for a fin with negligible tip heat transfer
is presented below in Figure 4.

Interpolated Optimization Plot for Lf and Lx
(Dots are sampling points)

1.5%

» — (L, = 0.031 (L))" + 0.665) 13

1.3

1.2

1.1

1

Lx [m]

0.9

Tempearature [*C]

0.8

0.7

0.6

0.5
0.04 0.05 0.06 0.07 0.08 0.09 0.1

Lf [m]
Figure 4. Optimization Plot and Function for AT =10 °C in the Lt, Lt Domain (Fin with
Negligible Tip Heat Transfer, 10 Iterations)

11

From this plot, the algorithm works precisely as intended — with an increasingly refined mesh
around the line where AT = 10 °C. Using this function, the following AT values were obtained for
a select few Lt values. As an aside, this graph began at Lt = 0.04 m because this optimization
algorithm operates poorly around Ls = 0.01 m.

Table 1. Resulting Temperatures for Select Lt Lengths Using the Equation from Figure 4

[[m] | 0.05 0.06 0.07 0.08 0.09 0.1

Lx [m] |1.242 |1.148 |1.080 |1.030 |0.990 |0.958
AT [°C] | 10.006 | 9.988 | 10.066 | 10.083 | 10.056 | 9.994
% Error | [] [0.06% |-0.12% | 0.66% | 0.83% | 0.56% | -0.06%

The percent errors, which are all less than 1%, indicate that the equation fit to the data in Figure 4
accurately maps the behavior between Ly, Ly, and AT. These errors average 0.32% with a 0.37%
standard deviation. Certainly, any one of these six combinations of Lt and Lx could be used and a
very close AT would be obtained.

Generalized Fin Equation

This optimization can also be run considering the more rigorous fin heat transfer expression from
Equation 10. This is the general fin expression that considers fins even with small aspect ratios.
The plot resulting is provided below in Figure 5.

Interpolated Optimization Plot for Lf and Lx

(Dots are sampling points)
1.5%

- 0637
14 —[Lx-ﬂ.ﬂg3[L{} +0.524) 13

1.3

1.2

1.1

Temperature ["C]

0.9

0.8

0.7

0.6

0.5
0.04 0.05 0.06 0.07 0.08 0.09 0.1

Lf [m]
Figure 5. Optimization Plot and Function for AT = 10 °C in the L, L Domain (General Fin
Equation, 5 Iterations)

This plot is very similar to the plot in Figure 4. However, the function fit to the data begins around
Lx = 1.25 m whereas the fit function in Figure 4 begins around 1.4 m. Both functions end around
0.92matLx=0.1m.

12

Though initially concerning, this result is rather unremarkable. It is known that the heat transfer
equation for negligible heat loss at the tip becomes increasingly inaccurate at smaller aspect ratios.
This behavior, therefore, accounts for the discrepancy between the two functions at smaller fin
lengths. Furthermore, as expected, the difference between the general fin equation and the fin
equation with negligible tip heat transfer decreases as the aspect ratio increases.

Now considering the function from Figure 5 and the general fin equation, the following table was
constructed for various fin lengths.

Table 2. Resulting Temperatures for Select Lt Lengths Using the Equation from Figure 5

Ly [m] |0.050 |0.060 |0.070 |0.080 |0.090 |0.100
Lx [m] |1.149 |1.080 |1.028 |0.987 |0.954 |0.926
AT [°C] | 9.990 | 10.066 | 10.078 | 10.044 | 9.973 | 10.082
% Error | [] |-0.10% | 0.66% | 0.78% | 0.44% | -0.27% | 0.82%

Ironically, with the more rigorous method, there are greater magnitude percent errors for each
selected fin length. These errors average -0.39% with a 0.42% standard deviation. This is very
similar to the mean and variability as the standard fin equation in Table 1. So, if the generalized
fin equation were to be the accepted formula, the Ls and Lx combinations presented in Table 2
would work excellently.

13

References

[1] M. N. Ozisik, "One-Dimensional, Steady-State Heat Conduction,” in Heat Transfer,
MEDTECH, 2018, pp. 42-100.

[2] J. P. Trelles, "Project 4: Design of a finned cooling plate," University of Massachusetts;
Lowell, Lowell, MA, 2020.

14

Appendix A
A.1l: Finned Heat Transfer Script

Heat Transfer of a Finned Plate

o° oo

o\

MECH.5410 - Advanced Heat Transfer
Project 4

Nicholas McLaughlin

11/30/2020

o° oo

o\

o

NO T E = m— o m oo oo
This code is a modification of Professor Jaun Pablo Trelles' 2020 code
"heatconvection2d fvm gs.m". Slight modifications have been made to suit
this analysis but the core functionality remains Professor Trelles' work.
No credit is meant to be taken for his work.

o° oo oo

o

o

PURPOSE == == m—m o o o e
This code considers a flat, horizontal plate with uniform fins on the
underside. The top surface is heated by a transverse flowing fluid
whereas the bottom surface is cooled by the ambient environment. The
temperature distribution of the fluid is of primary interest for this
investigation.

o° o° o o°

o

o

CODE DESCRIPTION === === oo oo oo e e
The following code makes use of an iterative Gauss-Seidel method to
evaluate the temperature distribution of the fluid using a finite volume
method.

o° oo

oe

o

INPUTS === ——m———mm——mm o
Lx: Length of plate

Lf: Length of fins

convcond: specify which fin equation to use

o oe

o

oe

OUTPUTS ———————— ==~ —— - m - mmmm

Total number of iterations

Perclet number

Overall mean temperature

Overall maximum temperature

Plot of the temperature distribution

Plot of the temperature profile at particular instants along the x axis

Plot of the temperature distribution with the analytical and numerically
calculated thermal boundary layer

d° o o o° o° o° o°

oe

o\°

FIN EQUATIONS
This code makes use of two different equations that can be specified by
the user
1. Fin with Negligible Tip Heat Transfer

Of = A*kf*m*tanh (m*Lf)* (T-Tinf)

where m = sqrt (P*hc/A*kf)
General Fin Equation

Of = kf*m* ((sinh (mL) + (he/ (m*kf))*cosh(mL))/ (cosh (mL) +

(he/ (m*kf))*sinh (mL)))* (T-Tinf) ;
where m = sqgrt (P*hc/A*kf)

AC o0 A 0° A° o° J° J° A o©°
N

o\

It is important to note that equation 2 reduces to equation 1 at

o

d° o 0 0 A O° A° J° A° A o° oe

o

A° 0 0 0 A O A° A A AN AN A A AN A A A A AN AN AN A AN AN A A A AN AN A A A A A A A° A o° o°

o\

sufficiently long fin lenghts

BOUNDARY CONDITIONS
The following are the only boundary conditions that need to be specified

in order for this code to properly run.
Left temperature:

T(i,7)
Bottom temperature:
= (0.5(kmt + hc)Tinf + T(i+1,7)*k/dy)/(0.5* (kmt + hc) + k/dy)

T(i,3)

= 100;

where kmt = kf*m*tanh (m*Lf)

where m = sqrt (P*hc/A*kf)
Left convective heat transfer coefficient
h = 1e20

Note:

left boundary to be fixed

ORIGINAL CODE DESCRIPTION

heatconvection2d fvm gs.m:

this is a large magnitude in order for the temperature at the

Finite Volume Method (FVM) solution of the heat convection

in a two-dimensional (2D) Cartesian domain.

Numerical solution attained using the Gauss-Seidel (GS) iterative

procedure instead of a direct solution of the linear system A * T = Db.

The temperature distribution T (x,y)
rectangular domain of size Lx x Ly,

volumetric heat capacity rhoCp,

described by:

rhoCp * Ux * dT/dx + rhoCp * Uy * dT/dy
- k * dT*2/dx*2 - k * dT"2/dy"2 + g

due to

heat convection through a

with thermal conductivity k,

:O,

and volumetric heat generation g is

0 < x <Lx, 0 <y < Ly

The boundary conditions for the problem are:

® ® ® ®
KX X

0 (left) k * dT/dx =
Lx (right): -k * dT/dx =
0 (bottom) k * dT/dy =
Ly (top): -k * dT/dy =

hleft
hright

hbottom

htop

where hleft and hright are convective heat
Taleft and Taright reference temperatures,

Finite Volume Method (FVM) approximation:

Physical domain:

- Taleft
Taright
- Tabottom
- Tatop

b A
HH A
|

)
)
)
)

transfer coefficients, and
respectively.

16

s (0, 0) (bottom) (Lx, 0)

% Index domain:

% Finite Volume discrettization - capital letters: nodes, lowercase: faces
% (1, 1) (bottom) (1, N)

% O— === = — o o ——---- > j (equivalent to x axis)
% \ \

3 \

% \ (South, S)

% \ i-1,73 |

% \ \ \

% (left) | i,3-1 - 1,73 i,3+1 | (right)

% | (West, W) | (East, E) |

% \ i+1,73 \

% \ (North, N) |

% \ \

% \ \

% O—————————— o

3 (N, 1) | (top) (N, N)

3 \

% i (equivalent to y axis)

clear

close all

convcond = menu('Select Fin Equation', 'Fin with negligible tip convection'...
, 'Generalized fin equation');

% material properties:

rhoCp = 800*2000; % [J/m"3/K] volumetric heat capacity (le3)
k = 0.5; % [W/m/K] thermal conductivity (1.0)

g = 0.0; % [W/m"3] volumetric heat generation (0.0)

mu = 0.001;

rho = 800;

Cp = 2000;

% geometry:
Lx =1.0;
Ly = 0.2;

o\
3
o

length of domain along x (1.0)
length of domain along y (0.1, 0.2)

o\
3
o

17

Lf = 0.01;

[

% Dimensionless Parametrs
Rex = @(x,v) rho*x*v/mu;
Pr = Cp*mu/k;

% Additional conditions

TO = 100; s [C]

Tinf = 10; % [C]

kf = 200;

hc = 10;

PdivA = 100;

% Velocity:

Uxmax = 0.001; % [m/s]
Uxfun = @(x,y) UXFUNCTION (x,VY);
Uyfun = @(x, y) (0);% [m/s]

o)

% Boundary layer functions
del = @(x)
delT = @(x) 4.53*x/(((Rex(x,

% Additional parameters

he = hc;
m = sqgrt (PdivA* (hc/kf));
mL = m*Lf;

D1 = kf*m* ((sinh (mL) +
(he/ (m*kf)) *sinh (mL))) ;

((280/13) *mu*x/ (rho*Uxmax)) ".
Uxmax))”*.5)* (Pr”

maximum velocity

5;
(1/3))):

(he/ (m*kf)) *cosh (mL))/ (cosh (mL) +

% Specify which fin equation to use

if convcond

kmt = kf*m*tanh (m*Lf) ;
elseif convcond ==

kmt = DI1;
else

disp('Error'")

end

o)

% Boundary conditions:

Taleft TO; % [C]
Taright 0; % [C]

Tatop = 0; 5 [C]

hleft 1e20; % [W/m"2/K]
hright = 0.0; % [W/m"~2/K]
htop = 0.0; % [W/m"~2/K]
% Solution parameters:

Nx = 200; % number of
Ny = 40; % number of
tol = 1.0e-8; % tolerance
% Upwind function:

ambient temperature - left
ambient temperature - right
ambient temperature - top

convective coefficient - left
convective coefficient - right
convective coefficient - top

nodes along x (200)
nodes along y (20, 40)
for solution (1.0e-5)

18

funUpwind = @(P) (max(0.0, (1.0 - 0.1 * abs(P))*5)); % power-law

dx Ix / (Nx - 1); % discrete x differential
x =0 : dx Lx; % discrete x axis, x(1) = 0, x(Nx) = Lx

o\

dy = Ly / (Ny - 1);
y =0 : dy : Ly;

discrete y differential
discrete y axis, y(l) = 0, y(Ny) = Ly

o

o

T = zeros(Ny, Nx); discrete solution, initial guess

% Create an arbitrary initial temperature distribution guess
for i = 1:Ny
for 7 = 1:Nx
T(i,73) = 100 + 1*sin(i*pi/10) + 1l*cos(j*pi/10);
end
end

[

% Define parameters to initialize the iterations

Told =T + 0.5; % auxiliary array to store previous solution
error = 100 * tol; % initialize error (any large number > tol)
nite = 0; % iteration counter

nitemax = 1000; % maximum number of iterations

tic
while (error > tol) && (nite < nitemax)

Q

% Update iteration counter:
nite = nite + 1;

% Update temperature from the old values:
for i =1 : Ny
for j =1 : Nx

% Boundary nodes:

if 3 == 1 % Left
T(1i, 3) = (T(i, j+1) + (hleft * dx / k) * Taleft)
/
(1 + (hleft *dx / k))
elseif j == Nx % Right
T(i, 3) = (T(i, j-1) + (hright * dx / k) * Taright)
/
(1 + (hright * dx / k));
elseif 1 == 1 % Bottom
T(1i, 3) = (T(i+1, J)*(k/dy) + Tinf*0.5* (kmt + hc)) /

19

elseif i

else

end

T(

%

i

(0.5* (kmt + hc)+ k/dy);

r]

(1

Ny

)

[

s Top

= (T(j-_llj

+

Inside nodes:

)

(htop

+

% Coordinates around control volume:
) - dx / 2; ye =

% Velocities

Uxe
Uxw
Uyn
Uys

% Discrete

=X(

x(J)
x(J)
x(3)

]

= Uxfun(xe, ye

= Uxfun

XW, YW

(
= Uyfun(xn, yn
(

= Uyfun

Xs, yS

+ dx / 2; yw

;oyn
;ys

)7
)7
)7
)

’

KKK

Yy

advective fluxes:

(htop * dy / k) * Tatop
*dy / k))
i) ;
i) ;
i) +dy / 2;
i) - dy / 2;

(
(
(
(

normal the control

volume faces:

Fe = rhoCp * Uxe * dy;

Fw = rhoCp * Uxw * dy;

Fn = rhoCp * Uyn * dx;

Fs = rhoCp * Uys * dx;

% Discrete diffusive fluxes:
De = k * dy / dx;

Dw = k * dy / dx;

Dn = k * dx / dy;

Ds = k * dx / dy;

% Local Peclet number on each face:
Pe = Fe / De;

Pw = Fw / Dw;

Pn = Fn / Dn;

Ps = Fs / Ds;

% Coefficients:
ak =

aW
aN
as
ab
b

% Gauss-Seidel update:

T(

i

De
Dw
Dn
Ds
ak

r]

*

+ % ok X

)

funUpwind
funUpwind
funUpwind
funUpwind

(
(
(
(

aWw + aN + aS;
g * dx * dy;

—_ — — —

T(

)

= (aW * T(i
(1 »J+ 1)
(1 -1, 3

(1 +1, 3

+ o+ o+ +

Yr

+ o+ o+~

-Fe, 0.0);
Fw, 0.0);
-Fn, 0.0);
Fs, 0.0);
1) +
/ abP;

20

end
end

[

% Update error:

error = max(T(:) - Told(:));

% Store the solution from this iteration:
Told = T;

Q

toc % Stop timer

% Screen output:
fprintf (' total number of iterations: %i \n', nite);

[

% Report characteristics of problem and solution:

fprintf (' Peclet number: %2.2f \n' , rhoCp * Uxmax * Ly / k);
fprintf (' mean temperature: %$2.2f \n' , mean(T(=)))
fprintf (' maximum temperature: %2.2f \n', max(T(:)));

o

Surface plot to scale

[X, Y] = meshgrid(x, vy);

figure

surfc(X, Y, T, 'edgecolor', 'none')
view (2)

c = colorbar;

c.Label.String = 'Temperature [°C]';
xlabel (' x [m] ")

ylabel (' y [m] ")

title (' Temperature Distribution')
hold on

axis tight
axis equal

% Overlay velocity and thermal boundary layers
dell = zeros(l,Nx);

delTT = dell;

for 7 = 1:Nx

dell(j) = (4.96*x(3))/ (Rex(x(7j),Uxmax))".5;
delTT (j) = 4.53*x(3)/ (((Rex(x(]),Uxmax))".5)*(Pr"(1/3)));
end
% Line plot:
Nx1 = 1; % node for x ~ $ Lx
Nx2 = round(0.2 * Nx); % node for x ~ 20% Lx
Nx3 = round(0.5 * Nx); % node for x ~ 50% Lx
Nx4 = Nx; % node for x ~ 100% Lx

figure
plot(T(:, Nx1), vy, '-r',
T(:, Nx2), y, '-m',
T(:, Nx3), vy, '-g', ...
T(:, Nx4), y, '"-b')
legend('Inlet', '20%%L x', '50%%L x', 'L x',

'location', 'northwest');
box on
xlabel (' T [C] ")

(
ylabel (' y [m] ")
title (' Temperature Profile T(y) ')

Q

% Calculate thermal boundary layer
eps = zeros (Ny,1);

Bnd = zeros(Ny,1);

for §j = 2:Nx

for i = 1:Ny

eps (i) = le-9*1i;
end
TCol = T(:,3) + eps;
TBnd = 0.990* (max (T (:,3)) - min(T(:,3))) + min(T(:,73));
Bnd(j) = interpl (TCol,y',TBnd);

end

o)

% Surface plot with thermal boundary overlay

figure

surfc(X, Y, T, 'edgecolor', 'none')
view (2)

axdim = axis;

c = colorbar;

c.Label.String = 'Temperature [°C]';
xlabel (' x [m] ")

ylabel (' y [m] ")
title('Temperature Distribution with Overlaid Thermal Boundary Layer')
hold on

ax = axes;

plot(x,delTT, 'black',x,Bnd, 'Blue', 'LineWidth', 2)

axis ([0 Lx 0 Lyl)

legend ('Analytical Thermal Boundary Layer', 'Numerical Thermal Boundary Layer
(99%) ")

ax.Color = 'none';
ax.Position(3) = 0.68;
ax.Position(l) = 0.114;
ax.XTick = [];

ax.¥YTick = [];

Q

% Boundary layer function
function ux = UXFUNCTION (x, V)
mu = 0.001;

rho = 800;
Uxmax = 0.001;

del = Q@(x) ((280/13)* (mu*x/ (rho*Uxmax)))".5;

if y >= del (x)
ux = Uxmax;
else
ux = Uxmax* ((y/del (x))
end
end

- 0.5% (y/del(x))"3);

23

A 2: Verification of Finned Heat Transfer Script

oC o° o° 0P oe

o\

o° 00 o oe

o

o o oe

o

o oo oP

o

o° d° A ° O O° A° o° d° o

o

O° A° A° A A A° A O O° O° A° A° o° oP

o\

o° oo

o\

Verification: Heat Transfer of a Finned Plate

MECH.5410 - Advanced Heat Transfer
Project 4

Nicholas McLaughlin

11/30/2020

NO T E = m— o m oo oo
This code is a modification of Professor Jaun Pablo Trelles' 2020 code
"heatconvection2d fvm gs.m". Slight modifications have been made to suit
this analysis but the core functionality remains Professor Trelles' work.
No credit is meant to be taken for his work.

PURPOSE == == m—m o o e e e
This code contains a very slight modification to the Heat Transfer of a
Finned Plate previously established. See that code for all relevant
inputs and considerations.

CODE DESCRIPTION === == m oo o o
The following code makes use of an iterative Gauss-Seidel method to
evaluate the temperature distribution of the fluid using a finite volume
method.

OUTPUTS ————————mmmmmm

Total number of iterations

Perclet number

Overall mean temperature

Overall maximum temperature

Plot of the temperature distribution

Plot of the temperature profile at particular instants along the x axis

Plot of the temperature distribution with the analytical and numerically
calculated thermal boundary layer

Plot of the analytical temperature distribution with the analytical and
numerically calculated thermal boundary layer

BOUNDARY CONDITIONS ————————m = m o m oo
The following are the only boundary conditions that need to be specified
in order for this code to properly run.

Left temperature:

T(i,3) = 100;
Bottom temperature:
T(i,3j) = (0.5(kmt + hc)Tinf + T(i+1,7)*k/dy)/ (0.5%* (kmt + hc) + k/dy)

where kmt = lel2

Note, this is a very high magnitude so the top of the plate has
the same temperature as Tinf. This is all that needed to be
changed in order to run this code at Tbottom = 10 C.

Left convective heat transfer coefficient
h = 1e20

Note: this is a large magnitude in order for the temperature at the

left boundary to be fixed

ORIGINAL CODE DESCRIPTION === === oo oo o
heatconvection2d fvm gs.m:

24

A° 0° A° AC A O A A A A A A AN AN A AN AN A A A AN A AN A AN A A A A AN AN AN AN AN AN A A A AN N AN A AN AN A A A AN AN A N A O O o

o\

Finite Volume Method (FVM)
in a two-dimensional (2D)

solution of the heat convection

Cartesian domain.

Numerical solution attained using the Gauss-Seidel (GS) iterative
procedure instead of a direct solution of the linear system A * T = b.

The temperature distribution T (x,Yy)
rectangular domain of size Lx x Ly,

volumetric heat capacity rhoCp,
described by:

rhoCp * Ux * dT/dx + rhoCp * Uy * dT/dy

due to heat convection through a
with thermal conductivity k,

and volumetric heat generation g is

- k * dT*2/dx"2 - k * dT*2/dy"2 + g = 0,

0 < x <Lx, 0 <y < Ly

The boundary conditions for the problem are:

® ® ® ®
KO X X

0 (left): k *
Lx (right): -k *
0 (bottom): k *
Ly (top y: -k *

dT/dx =

dT/dx
dT/dy
dT/dy

hleft
hright
hbottom

= htop

where hleft and hright are convective heat
Taleft and Taright reference temperatures,

- Taleft

- Taright
- Tabottom
- Tatop

X% % of
—_~ o~~~

= 3 33

)
)
)
)

transfer coefficients, and
respectively.

Finite Volume Method (FVM) approximation:
Physical domain:
\
(0, Ly) | (top) (Lx, Ly)
O—————— = ——— o
\ \
\ \
\ \
\ \
\ |
(left) | | (right
\ \
\ \
\ \
\ \
\ \
O——————— o -————> x
(0, 0) (bottom) (Lx, 0)
Index domain:
Finite Volume discrettization - capital letters: nodes, lowercase: faces
(1, 1) (bottom) (1, N)
O———————————— e —— e ———— o ————- J (equivalent to x axis)
\ \
\ \
\ (South, S)
\ i-1,3 |
\ \ \
(left) | i,j-1 - 1,3 i,j+1 | (right

25

| (West, W) | (East, E) |
\ i+1,3 \
% \ (North, N) \
\ \
\ \

clear

% material properties:

rhoCp = 800*2000; % [J/m"3/K] volumetric heat capacity (le3)
k = 0.5; [(W/m/K] thermal conductivity (1.0)

g = 0.0; [(W/m"3] volumetric heat generation (0.0)

mu = 0.001;

rho = 800;

Cp = 2000;

oe

oe

% geometry:
Lx =
Ly =
Lf =

~
o
3

length of domain along x (1.0)
length of domain along y (0.1, 0.2)

O O

o N O
oe
=

=~
~e

Q

% Dimensionless Parametrs
Rex = @ (x,Vv) rho*x*v/mu;
Pr = Cp*mu/k;

% Additional conditions

TO = 100; % [C]
Tinf = 10; % [C]
kf = 200;
hc = 10;

PdivA = 100;
% velocity:
Uxmax = 0.001; % [m/s] maximum velocity

Q

% Boundary layer functions
del = @(x) ((280/13)*mu*x/ (rho*Uxmax))”.5;
delT = @(x) 4.53*x/(((Rex(x, Uxmax))”".5)*(Pr~(1/3)));

[

% Velocity:

Uxmax = 0.001; % [m/s] maximum velocity
Uxfun = @(x,y) UXFUNCTION (x,VY):;

Uyfun @(x, y)(0);% [m/s]

% Additional parameters

he = hc;
m = sqgrt (PdivA* (hc/kf));
mL = m*Lf;

D1 = kf*m* ((sinh(mL) + (he/ (m*kf))*cosh(mL))/ (cosh(mL) +
(he/ (m*kf)) *sinh(mL))) ;

kmt = 1lel2;

[

% Boundary conditions:

Taleft = 100; $ [C] ambient temperature - left (100, 0)

Taright = 0; $ [C] ambient temperature - right

$Tabottom = @ (T,hbot) (T*(0.5* (kmt + hc) - hbot) - 0.5* (kmt + hc)*Tinf) /hbot;
Tabottom = @(T,hbot) 10;

Tatop = 0; % [C] ambient temperature - top

hleft = 1e20; % [W/m"2/K] convective coefficient - left (le8)

hright = 0.0; % [W/m"2/K] convective coefficient - right (0)

htop = 0.0; % [W/m"~"2/K] convective coefficient - top (0)

% Solution parameters:

Nx = 200; % number of nodes along x (200)
Ny = 40; % number of nodes along y (20, 40)
tol = 1.0e-8; % tolerance for solution (1.0e-5)

o)

% upwind function:
funUpwind = @(P) (max(0.0, (1.0 - 0.1 * abs(P))"5));

o

power—-law

discrete x differential
discrete x axis, x(1) = 0, x(Nx) = Lx

XoQ.
b
Il
o =
b
~
0.
X~
2
b
=
R
=
o oP

oo

dy = Ly / (Ny - 1);
% 0 : dy : Ly;

discrete y differential
discrete y axis, y (1) = 0, y(Ny) = Ly

oe

o\°

T = zeros(Ny, Nx); discrete solution, initial guess

o)

% Create an arbitrary initial temperature distribution guess
for i = 1:Ny
for j = 1:Nx
T(i,73) = 100 + 1*sin(i*pi/10) + 1*cos(j*pi/10);
end
end

[)

% Define parameters to initialize the iterations

27

Told =T + 0.5; % auxiliary array to store previous solution
error = 100 * tol; % initialize error (any large number > tol)
nite = 0; % iteration counter

nitemax = 1000; % maximum number of iterations

tic
while (error > tol) && (nite < nitemax)

o)

% Update iteration counter:

nite = nite + 1;

% Update temperature from the old wvalues:
for i = 1 : Ny

for 3 =1 : Nx

% Boundary nodes:

if 3 == 1 % Left
T(i, 3) = (T(1, j+1) + (hleft * dx / k) * Taleft
/
(1 + (hleft *dx / k))
elseif j == Nx % Right
T(i, 3) = (T(i, -1) + (hright * dx / k) * Taright
/
(1 + (hright * dx / k));
elseif 1 == 1 % Bottom
T(i, 3) = (T(i+l, 3)*(k/dy) + Tinf*0.5*% (kmt + hc)) /
(0.5*(kmt + hc)+ k/dy);
elseif 1 == Ny % Top
T(i, 3) = (T(i-1, §) + (htop * dy / k) * Tatop
/
(1 + (htop *dy / k))

\o

else % Inside nodes:

% Coordinates around control volume:

xe = x(J) —-dx / 2; ye = y(i) ;
xw = x(3) +dx / 2; yw=y(1) ;
xn = x() ;yn =y(i) +dy / 2;
xs = x(J) ;ys =y(i) -dy / 2;

% Velocities normal the control volume faces:
Uxe = Uxfun(xe, ye);

Uxw = Uxfun(xw, yw);
Uyn = Uyfun(xn, yn);
Uys = Uyfun(xs, ys);

Q

% Discrete advective fluxes:

Fe = rhoCp * Uxe * dy;
Fw = rhoCp * Uxw * dy;
Fn = rhoCp * Uyn * dx;
Fs = rhoCp * Uys * dx;

% Discrete diffusive fluxes:

De k * dy / dx;
Dw = k * dy / dx;
Dn = k * dx / dy;
Ds = k * dx / dy;

% Local Peclet number on each face:

Pe = Fe / De;
Pw = Fw / Dw;
Pn = Fn / Dn;
Ps = Fs / Ds;

% Coefficients:

aE = De * funUpwind(Pe) + max(-Fe, 0.0);
aW = Dw * funUpwind(Pw) + max(Fw, 0.0);
aN = Dn * funUpwind(Pn) + max(-Fn, 0.0);
aS = Ds * funUpwind(Ps) + max(Fs, 0.0);
abP = aE + aW + aN + asS;
b =g * dx * dy;
% Gauss-Seidel update: T(y, x)
T(l,j):(aW*T(l Ij_1)+
aBE * T(i , J + 1) +
asS * T(i -1, j)+
aN * T(i + 1, j) + b) / aP;
end
end
end
% Update error:
error = max(T(:) - Told(:));
% Store the solution from this iteration:
Told = T;
end
toc % Stop timer
% Post processing
% Screen output:
fprintf (' total number of iterations: %i \n', nite);
% Report characteristics of problem and solution:
fprintf (' Peclet number: %2.2f \n' , rhoCp * Uxmax * Ly / k);

fprintf (' mean temperature: %$2.2f \n' , mean(T(:)));
fprintf (' maximum temperature: %$2.2f \n', max(T(:)));

o

Surface plot to scale

[X, Y] = meshgrid(x, y);

figure

surfc(X, Y, T, 'edgecolor', 'none')
view (2)

c = colorbar;

c.Label.String = 'Temperature [°C]';
xlabel (' x [m] ")

ylabel (" y [m] ')

title(' Temperature Distribution')
hold on

axis tight

axis equal

% Overlay velocity and thermal boundary layers
dell = zeros(1l,Nx);

delTT = dell;

for 7 = 1:Nx

dell(j) = (4.96*x(3))/ (Rex(x(7j),Uxmax))".5;
delTT (J) = 4.53*x(3)/ (((Rex(x(7),Uxmax))”".5)* (Pr~(1/3)));
end
% Line plot:
Nx1 = 1; % node for x ~ $ Lx
Nx2 = round(0.2 * Nx); % node for x ~ 20% Lx
Nx3 = round(0.5 * Nx); % node for x ~ 50% Lx
Nx4 = Nx; % node for x ~ 100% Lx
figure

plot(T(:, Nx1), vy, '-r',
T(:, Nx2), y, '-m',
T(:, Nx3), vy, '-g',
T(:, Nx4), y, '-b')
legend('Inlet', '20%%L x', '50%%L x', 'L x',

'location', 'northwest');
box on
xlabel (' T [°C] ")

(
ylabel (" y [m] ")
title(' Temperature Profile T(y) ')

% Calculate thermal boundary layer
eps = zeros (Ny,1);
Bnd = zeros (Ny,1);
for 7 = 2:Nx
for i = 1:Ny

eps (i) = le-9*i;
end
TCol = T(:,3) + eps;
TBnd = 0.990* (max(T(:,3)) - min(T(:,3))) + min(T(:,3))

Bnd(j) = interpl (TCol,y',TBnd);

end

[

% Surface plot with thermal boundary overlay

figure

surfc(X, Y, T, 'edgecolor', 'none')
view (2)

axdim = axis;

c = colorbar;

c.Label.String = 'Temperature [°C]';
xlabel (' x [m] ")

ylabel (' y [m] ")
title ('Temperature Distribution with Thermal Boundary Layer')
hold on

ax = axes;

plot (x,delTT, 'black', x,Bnd, 'Blue', 'LineWidth', 2)

axis ([0 Lx 0 Ly])

legend ('Analytical Thermal Boundary Layer', 'Numerical Thermal Boundary Layer
(99%) ")

ax.Color = 'none';

ax.Position(3) = 0.68;
ax.Position(l) = 0.114;
ax.XTick = [];
ax.YTick = [];

clear x y
x = linspace (0,Lx,Nx);
y = linspace(0,Ly,Ny);
VdelT = zeros (1l,Nx);
TVer = zeros (Nx,Ny);
for 1 = 1:Nx
Re = Rex(x(1),Uxmax) ;
VdelT (1) = 4.53*x(1i)/ (Re”(.5) * Pr~(1/3));
for j = 1:Ny
if y(3) <= VdelT (1)

TVer(i,3j) = (1.5*(y(j)/VdelT(i)) - 0.5*(y(j)/VdelT(i))"3)*(TO0 -
Tinf) + Tinf;
else
TVer (i,3) = TO;

end
end
end

o)

% Plot surface with overlaid thermal boundary layers

figure

s = surf(x,y,TVer"');

s.EdgeColor = 'none';

view (2)

c = colorbar;

c.Label.String = 'Temperature [°C]';

title('Analytical Temperature Distribution with Thermal Boundary Layer')

31

xlabel ('x [m]")
ylabel('y [m]")

ax = axes;

plot (x,VdelT, 'black',x,Bnd, 'Blue', 'LineWidth', 2)

axis ([0 Lx 0 Ly])

legend ('Analytical Thermal Boundary Layer', 'Numerical Thermal Boundary Layer
(99%) ")

ax.Color = 'none';
ax.Position(3) = 0.68;
ax.Position(l) = 0.114;
ax.XTick = [];

ax.YTick = [];

Q

% Plot temperature distributions at x = L

figure

plot (TVer(end,:),y,T(:,end),y, 'lineWidth', 2);

legend ('Analytical Solution', '"Numerical Solution')

title('Comparison Between Temperature Profiles for Various Solutions at x =
L")

ylabel ('y [m]")
xlabel ('T [°C]"

% Boundary layer function
function ux = UXFUNCTION (x, V)
mu = 0.001;

rho = 800;

Uxmax = 0.001;

del = Q@(x) ((280/13)* (mu*x/ (rho*Uxmax)))".5;
if y >= del (x)
ux = Uxmax;
else
ux = Uxmax* ((y/del(x)) - 0.5*(y/del(x))"3);
end

end

A.3: Optimization of Lx and L Script

% Optimization Code for a Finned Plate

% MECH.5410 - Advanced Heat Transfer
% Project 4

% Nicholas McLaughlin

% 11/30/2020

clear

O e e e
E]

Lxmin = 0.5; % [m] Minimum Lx dimension

Lxmax = 1.5; % [m] Maximum Lx dimension

Lfmin = 0.04; % [m] Minimum Lf dimension
Lfmax = 0.1; % [m] Maximum Lf dimension
kfin = 5; s [] Number of iterations desired
meshdim = 50; s [1] Dimension for final mesh (Size should be
inconsequential)
NLx = 5; [] Number of starting Lx nodes

% Note: This will increase by 2 for each iteration
NLf = 10; s [] Number of Lf nodes (this is fixed throughout the
code)

% Create dimension vectors to be tested
Lx = linspace (Lxmin, Lxmax,NLx) ;

Lf linspace (Lfmin, Lfmax,NLf) ;

Lx repelem(Lx',1,NLf);

$Preallocate matrix
StoreDeltaT = zeros (NLx, NLf);

% Find number of nodes
[NLx,NLf] = size (Lx);

33

for k = 1:kfin

tic
for 1 = 1:NLx
for j = 1:NLf
% This if statement makes it such that the code only calculates
% the new nodes - there is no recalculation of past nodes
if StoreDeltaT(i,]) ==
[deltaT,Mean,Max,iter] = funConv(Lx(i,]J),LE(3));
StoreDeltaT (i,]) = deltaT;
else
end
end
end
toc

o)

% Display these arrays to observe the code operating
disp('DeltaT Array')

disp (StoreDeltaT)

disp('Lx Array')

disp (Lx)

% Test where the DeltaT is greater than 10 C
LfExist = zeros(1l,NLf);
for 3 = 1:NLf
if max (StoreDeltaT(:,]J)) >= 10
LfExist (j) = 1;
else
LfExist (j) = 0;
end
end

% Estimate where DeltaT = 10 C through interpolation
[~,J] = max(LfExist);

Lfbnd = zeros (2, (NLf - J));

for i = J:NLf

Lfbnd (2,1 - (J)+1) = Lf(1);

Lfbnd(1,i - (J)+1) = interpl (StoreDeltaT(:,i),Lx(:,1i),10);
end
Bnd = Lfbnd;
Bnd = sortrows (Bnd') ;

% Fit a power function to the data
fit(Bnd(:,1),Bnd(:,2), 'power2');
coeffvalues (FO) ;

|
o O
[l

Q

% Create the fit power function and evaluate
func = @(x) Fo(l) .* x."Fo(2) + Fo(3);

x = linspace(Bnd(1l,1),Bnd(end, 1) ,NLx*2) ;

y = func(x);

% Determine the inverse of func (x)
g = @Q(y) ((y-Fo(3))./Fo(l))."(1./(Fo(2)));

% Determine where new nodes need to be created
[M,N] = size (StoreDeltaT);

34

clear res Lxnew DeltaTnew
if k < kfin
for j = 1:NLf
clear res

res(:,j) = abs(StoreDeltaT(:,3j) - 10);
[~,I1] = min(res(:,3));
I(3) = I1;
if I1 ==
I1 = M-1;
elseif Il ==
I1 = 2;
else
I1 = I(3);
end
a 0.5*(Lx(I1+1,73) + Lx(I1,3));
b 0.5*(Lx(I1,3) + Lx(I1-1,3));
A = 0;
B = 0;
coll = Lx(1l:(I1-1),73);
col2 = Lx(I1+1:NLx,7J);

Tcoll = StoreDeltaT(l:(Il1-1),7);
Tcol2 = StoreDeltaT (I1+1:NLx,7);
disp(I1)

Q

% Create the new nodes in here

Lxnew(:,j) = [coll; b; Lx(I1l,j); a; col2];
Lxnew(:,]) = sort(Lxnew(:,3));
DeltaTnew(:,J) = [Tcoll; B; StoreDeltaT(Il,j); A; Tcol2];
end
Lx = Lxnew;
StoreDeltaT = DeltaTnew;
[NLx,NLf] = size (Lx);
else

end
end

% Plot the DeltaT wvalues for each Lf used

figure
hold on
for i = 1:NLf
Lx(:,1) = sort(Lx(:,1));
StoreDeltaT(:,1i) = sort(StoreDeltaT(:,1i)):;
plot(Lx(:,1i),StoreDeltaT(:,1i), 'lineWidth', 2)
end
legend(strcat ('Lf="',num2str(Lf')), 'location', 'southeast')
title('Delta T for each Input L f')
xlabel ('L x [m]");

ylabel ('Delta T [°C]'");

% Create structures for final surface
LF = repelem(Lf,NLx,1);
xlin = linspace (min(LF, [],'all'),max(LF,[],'all'),meshdim);

ylin = linspace (min(Lx, [],'all'),max(Lx, [],'all'),meshdim);
[X,Y] = meshgrid(xlin,ylin);

% Convert data into a plottable surface
7 = griddata (LF,Lx,StoreDeltaT,X,Y, 'cubic');

[

% Plot surface

figure

s = surf(X,Y,Z2);

s.EdgeColor = 'none';

c = colorbar;

c.Label.String = 'Temperature [°C]';

title({'Interpolated Optimization Plot for Lf and Lx', ' (Dots are sampling
points) '})
xlabel ('Lf [m]")
ylabel ('Lx [m]"')
view (2) ;

grid off

% Calculate where delta T = 10 C
clear Bnd
Lfbnd = zeros (2,meshdim) ;
for 1 = 1l:meshdim
Lfbnd(2,1) = X(1,1);
Lfbnd(1,1i) = interpl(Z(:,1i),Y(:,1i),10);
end

Q

% Fit and plot a power function
Bnd = Lfbnd';
FO = fit(Bnd(:,2),Bnd(:,1), '"power2');

Fo = coeffvalues (FO);

func = @(x) Fo(l) .* x."Fo(2) + Fo(3); % So this gives us Lx(Lf)
x = X(1,:);

y = func(x);

hold on

o)

% Plot where all the nodes were
plot3(Lf,Lx,StoreDeltaT,"'.k', '"MarkerSize',10)

view (2)

ax = axes;

fplot (func, [min(x) ,max(x)],'k','lineWidth', 2)
axis([min(x) max(x) min(Y, [],'all') max (Y, [],'all")])

o\°

Add additional details
= Fo(l);

= Fo(2);

= Fo(3);

write = sprintf('(L x = %.3f (L f)"{%.3f} + %$.3f)"',a,b,c);
legend (write)

ax.Color = 'none'
ax.Position(3) =
ax.Position(1l) =
ax.Position(4) =
ax.XTick = [];
ax.YTick = []

QO W

X

.676;
.113;
.79;

O O O~

’

%

End of code

37

A.4: Finned Heat Transfer Function

% Function: Heat Transfer of a Finned Plate

o o\

o

MECH.5410 - Advanced Heat Transfer
Project 4

Nicholas McLaughlin

11/30/2020

o° oo

o\

o

NO T E = m— o m oo oo
This code is a modification of Professor Jaun Pablo Trelles' 2020 code
"heatconvection2d fvm gs.m". Slight modifications have been made to suit
this analysis but the core functionality remains Professor Trelles' work.
No credit is meant to be taken for his work.

o oo oe

o

o

PURPOSE - - =-—=====—— == — - —
This code considers a flat, horizontal plate with uniform fins on the
underside. The top surface is heated by a transverse flowing fluid
whereas the bottom surface is cooled by the ambient environment. The
temperature distribution of the fluid is of primary interest for this
investigation.

0% 00 o oe

o

o

CODE DESCRIPTION === === o o o o e
The following code makes use of an iterative Gauss-Seidel method to
evaluate the temperature distribution of the fluid using a finite volume
method.

o° oo

oe

oe

INPUTS == m—mm—mmm oo m oo
Lx: Length of plate

Lf: Length of fins

convcond: specify which fin equation to use

o° o

o

o

OUTPUTS —————————mmmmm

Total number of iterations

Perclet number

Overall mean temperature

Overall maximum temperature

Plot of the temperature distribution

Plot of the temperature profile at particular instants along the x axis

Plot of the temperature distribution with the analytical and numerically
calculated thermal boundary layer

d° 0 o o° o° o° o°

oe

oe

FIN EQUATIONS
THis code makes use of two different equations that can be specified by
the user
1. Fin with Negligible Tip Heat Transfer

Of = A*kf*m*tanh (m*Lf)* (T-Tinf)

where m = sqrt (P*hc/A*kf)
2. General Fin Equation

Qf = kf*m* ((sinh(mL) + (he/ (m*kf))*cosh(mL))/ (cosh(mL) +

(he/ (m*kf))*sinh(mL)))* (T-Tinf) ;
where m = sqgrt (P*hc/A*kf)

A° d° A° A A O° o° o° oo o°

o\

It is important to note that equation 2 reduces to equation 1 at
sufficiently long fin lenghts

o\

A° o0 o© 0 A O° O° A° A° A o° oe

o

O° O A A A A AN A A A A AN A A AN A A A A A AN AN AN A A A A A A AN A A AN A A A A A A o° o°

o\

BOUNDARY CONDITIONS
The following are the only boundary conditions that need to be specified

in order for this code to properly run.
Left temperature:

T(i,3)
Bottom temperature:

T(i,3)

Note:

= 100;

= (0.5(kmt + hc)Tinf + T(i+1,7)*k/dy)/(0.5* (kmt + hc) + k/dy)
where kmt = kf*m*tanh (m*Lf)

where m = sqrt (P*hc/A*kf)
Left convective heat transfer coefficient
h = 1e20

left boundary to be fixed

ORIGINAL CODE DESCRIPTION

heatconvection2d fvm gs.m:

this is a large magnitude in order for the temperature at the

Finite Volume Method (FVM) solution of the heat convection

in a two-dimensional (2D) Cartesian domain.

Numerical solution attained using the Gauss-Seidel (GS) iterative

procedure instead of a direct solution of the linear system A * T = Db.

The temperature distribution T (x,yVy)
rectangular domain of size Lx x Ly,

volumetric heat capacity rhoCp,

described by:

rhoCp * Ux * dT/dx + rhoCp * Uy * dT/dy

due to

heat convection through a

with thermal conductivity k,

- k * dT*2/dx*2 - k * dT*2/dy*2 + g = 0,

and volumetric heat generation g is

0 < x <Lx, 0 <y < Ly

The boundary conditions for the problem are:

® ® ® ®
KX X

0 (left): k * dT/dx =
Lx (right): -k * dT/dx =
0 (bottom): k * dT/dy =
Ly (top): -k * dT/dy =

hleft
hright

hbottom

htop

where hleft and hright are convective heat
Taleft and Taright reference temperatures,

Finite Volume Method (FVM) approximation:

Physical domain:

- Taleft)

Taright)
- Tabottom)
- Tatop)

b S
HHHaA
[

transfer coefficients, and
respectively.

39

s (0, 0) (bottom) (Lx, 0)

% Index domain:

% Finite Volume discrettization - capital letters: nodes, lowercase: faces
s (1, 1) (bottom) (1, N)

% O m o ———-- > j (equivalent to x axis)
% \

% \ \

% | (South, S)

% | i-1,73 |

% \ \

% (left) | i,3-1 i,7 i,3+1 | (right)

% | (West, W) | (East, E) |

< | i+1,73 \

S | (North, N) |

% \ |

% \

% O———— o

% (N, 1) | (top) (N, N)

% \

% i (equivalent to y axis)

function [deltaT,Mean,Max,iter] = funConv (Lx,Lf)

% Inputs

o)

% material properties:

rhoCp = 800*2000; % [J/m"3/K] volumetric heat capacity (le3)
k = 0.5; % [W/m/K] thermal conductivity (1.0)

g = 0.0; % [W/m"3] volumetric heat generation (0.0)

mu = 0.001;

rho = 800;

Cp = 2000;

% geometry:
Ly = 0.2; % [m] length of domain along y (0.1, 0.2)

o)

% Dimensionless Parametrs
Rex = @(x,v) rho*x*v/mu;
Pr = Cp*mu/k;

% Additional conditions

TO0O = 100; % [C]
Tinf = 10; s [C]
kf = 200;

hce = 10;

PdivA = 100;

% Velocity:

Uxmax = 0.001; % [m/s] maximum velocity
Uxfun = @(x,y) UXFUNCTION (x,YVY):;

Uyfun = @(x, y) (0);% [m/s]

% Boundary layer functions

del = Q(x) ((280/13)*mu*x/ (rho*Uxmax))”.5;

delT = Q@(x) 4.53*x/(((Rex(x, Uxmax))”.5)*(Pr~(1/3)));

% Additional parameters

he = hc;
m = sqgrt (PdivA* (hc/kf));
mL = m*Lf;

D1 = kf*m* ((sinh (mL) + (he/ (m*kf))*cosh(mL))/ (cosh(mL) +
(he/ (m*kf)) *sinh(mL)));

Skmt = kf*m*tanh (m*Lf); % Uncomment this for simple fin equation
kmt = D1; % Uncomment this for general fin equation

Q

% Boundary conditions:

Taleft = TO; $ [C] ambient temperature - left (100, 0)
Taright = 0; % [C] ambient temperature - right

Tatop = 0; % [C] ambient temperature - top

hleft = 1le20; % [W/m"2/K] convective coefficient - left (1le8)
hright = 0.0; % [W/m"2/K] convective coefficient - right (0)
htop = 0.0; % [W/m"2/K] convective coefficient - top (0)

% solution parameters:

Nx = 200; % number of nodes along x (200)

Ny = 40; % number of nodes along y (20, 40)

tol 1.0e-4; % tolerance for solution (1.0e-5)

o)

% Upwind function:
funUpwind = @(P) (max(0.0, (1.0 - 0.1 * abs(P))*5)); % power-law
% upwind

discrete x differential
discrete x axis, x(1) = 0, x(Nx) = Lx

XoQ.
b
Il
o
b
~
0.

X~
=2
b
=

Xl
i
o o

oe

discrete y differential

dy = Ly / (Ny - 1);
= . discrete y axis, y(l) = 0, y(Ny)

Yy

I
(@)
(o}

S
=

S
o\°

Ly

o\

T = zeros(Ny, Nx); discrete solution, initial guess

Q

% Create an arbitrary initial temperature distribution guess
for i = 1:Ny
for 3 = 1:Nx

T(i,3) = 100 + 1*sin(i*pi/10) + 1l*cos(j*pi/10);
end
end

% Define parameters to initialize the iterations
Told =T + 0.5; % auxiliary array to store previous solution

error = 100 * tol; % initialize error (any large number > tol)
nite = 0; % iteration counter
nitemax = 1000; % maximum number of iterations

tic
while (error > tol) && (nite < nitemax)
% Update iteration counter:
nite = nite + 1;
% Update temperature from the old wvalues:
for i =1 : Ny
for 3 =1 : Nx

% Boundary nodes:

if 3 == 1 % Left
T(i, 3) = (T(i, j+1) + (hleft * dx / k) * Taleft)
/
(1 + (hleft *dx / k))
elseif j == Nx % Right
T(i, 3) = (T(i, j-1) + (hright * dx / k) * Taright)
/
(1 + (hright * dx / k));
elseif i == 1 % Bottom
T(i, 3) = (T(i+l, j)*(k/dy) + Tinf*0.5* (kmt + hc)) /
(0.5*%(kmt + hc)+ k/dy);
elseif 1 == Ny % Top
T(i, 3) = (T(i-1, jJ) + (htop * dy / k) * Tatop)
/
(1 + (htop *dy / k))

\o

else % Inside nodes:

% Coordinates around control volume:

xe = x(J) —dx / 2; ye = y(1) ;
xw = x(J) +dx / 2; yw=y(1) ;
xn = x(J) ;oyn=y(i) +dy / 2;
xs = x(J) ;ys =y(1i) -dy / 2;

[)

% Velocities normal the control volume faces:
Uxe = Uxfun(xe, ye);

42

Uxw Uxfun(xw, yw);
Uyn = Uyfun(xn, yn);
Uys Uyfun(xs, ys);

% Discrete advective fluxes:
Fe = rhoCp * Uxe * dy;

Fw = rhoCp * Uxw * dy;

Fn = rhoCp * Uyn * dx;

Fs = rhoCp * Uys * dx;

% Discrete diffusive fluxes:
De = k * dy / dx;

Dw k * dy / dx;

Dn = k * dx / dy;

Ds k * dx / dy;

% Local Peclet number on each face:

Pe = Fe / De;
Pw = Fw / Dw;
Pn = Fn / Dn;
Ps = Fs / Ds;

% Coefficients:

aE = De * funUpwind(Pe) + max(-Fe, 0.0);
aW = Dw * funUpwind(Pw) + max(Fw, 0.0);
aN = Dn * funUpwind(Pn) + max(-Fn, 0.0);
aS = Ds * funUpwind(Ps) + max(Fs, 0.0);
abP = aE + aW + aN + aS;
b =g * dx * dy;
% Gauss-Seidel update: T(y, x)
T(1i, J) = (aWw * T(1 3 - 1) +
akBE * T(i , 3+ 1) +
as * T(1i -1, 7)y +
aN * T(i+ 1, jJ) + b) / aP;
end
end
end
% Update error:
error = max(T(:) - Told(:));

Q

% Store the solution from this iteration:
Told = T;

o)

toc, % stop timer

Q

% Screen output:
fprintf (' total number of iterations: %i \n', nite);

% Report characteristics of problem and solution:

fprintf (' Peclet number: %2.2f \n' , rhoCp * Uxmax * Ly / k);
fprintf (' mean temperature: %2.2f \n' , mean(T(:)))

fprintf (' maximum temperature: %2.2f \n', max(T(:)));

dell = zeros(1l,Nx);
delTT dell;
for 7 = 1:Nx
dell(3) = (4.96*x(3))
delTT (j) = 4.53*x(73)/
end

,Uxmax))".5;

/ (Rex (x(J)
(j),Uxmax))~.5)*(Pr~(1/3)));

(3
((Rex (x(

eps zeros (Ny, 1) ;
Bnd = zeros (Ny,1);
for 7 = 2:Nx
for i = 1:Ny
eps (i) = le-9%i;
end
TCol = T(:,3) + eps;
TBnd 0.990* (max (T(:,3)) - min(T(:,3))) + min(T(:,3));
Bnd(j) = interpl (TCol,y',TBnd);
end

iter = nite;

Mean = mean(T(:));
Max = max(T(:,end));
deltaT =max (T, [],'all') - mean(T(:,end));

% Boundary layer function
function ux = UXFUNCTION (x, V)
mu = 0.001;

rho = 800;

Uxmax = 0.001;

del = Q@(x) ((280/13)* (mu*x/ (rho*Uxmax)))”.5;
if y >= del (x)
ux = Uxmax;
else
ux = Uxmax* ((y/del(x)) - 0.5*(y/del(x))"3);
end
end

end

45

